

Quality assurance of Modular Metabolic Systems

Danny Rutar, Redback Biotek, Ireland/Australia Jeffrey Swen(Intern), University of Ulster, Belfast.

Background (1987)

Danny Rutar: (technologist, scientist)
Biophysics & Instrumentation, Melbourne.

Biomedical Engineering, Queen Vic. Hospital, Mel.

Bionic Ear Institute, Melbourne. (support R&D)

Australian Institute of Sport, Canberra. (support)

Victoria University, Human Perf. Lab., Melbourne.

Irish, Inst. of Sp., University of Limerick, Ireland.

Redback Biotek, Ireland. (Solutions Provider)

Topics

- Instrumentation Errors 101
- Sources of error metabolic systems
- Calibration Gas errors
- Oxygen Sensor errors
- Ventilation sensor errors
- Nafion Tubing
- Breath by Breath
- Metabolic calibrator
- Metabolic System comparisons

What is your system's error for VO2?

- Do you know what your metabolic system error is ???(Value - hands up).
- How has this been measured?
- Sensor error different to system error.
- •Why dont we know?
- How can we make scientific claims?

Calculating errors

simple error calculations: (instrumentation 101)

$$R = \frac{X \cdot Y}{Z}$$

$$\frac{\delta R}{|R|} \approx \frac{\delta X}{|X|} + \frac{\delta Y}{|Y|} + \frac{\delta Z}{|Z|}$$

$$\delta R = |R| \cdot \sqrt{\left(\frac{\delta X}{X}\right)^2 + \left(\frac{\delta Y}{Y}\right)^2 + \left(\frac{\delta Z}{Z}\right)^2}$$

- 100cm rule with 1cm graduations.
- Error = +/- 0.5cm
- measure 350cm?
- Accumulated error

$$\bullet$$
 = 0.5 + 0.5 + 0.5 + 0.5 = 2.0cm

- Therefore 350.0 +/- 2.0cm
- Still add errors when subtracting $\delta R = \sqrt{(\delta X)^2 + (\delta Y)^2 + (\delta Z)^2}$

$$R = X + Y - Z$$

$$\delta R \approx \delta X + \delta Y + \delta Z$$

$$- \sqrt{(\delta Y)^2 + (\delta Y)^2 + (\delta Z)^2}$$

Apply errors to the VO2 equation

- 1. Look at the equations needed to calculate VO2.
- 2. Use the sensor errors for each parameter.
- 3. Calculate the total mathematical

error as per:

$$R = X + Y - Z$$

$$\delta R \approx \delta X + \delta Y + \delta Z$$

$$\delta R = \sqrt{(\delta X)^2 + (\delta Y)^2 + (\delta Z)^2}$$

$$R = \frac{X \cdot Y}{Z}$$

$$\frac{\delta R}{|R|} \approx \frac{\delta X}{|X|} + \frac{\delta Y}{|Y|} + \frac{\delta Z}{|Z|}$$

$$\delta R = |R| \cdot \sqrt{\left(\frac{\delta X}{X}\right)^2 + \left(\frac{\delta Y}{Y}\right)^2 + \left(\frac{\delta Z}{Z}\right)^2}$$

Average Sensor errors for VO2 (in order of importance to equation)

Oxygen	0.01-0.1%
Ventilation	1-2%
Pressure	0.05%
Carbon Dioxide	0.02%
Temperature	0.1-0.01%
Humidity	1-2%

Sources of error

- O2 sensor errors
- Water vapour (humidity)
 - Ventilation sensor errors
 - Timing delays (Breath by Breath, also Mixing chamber)
 - Gas sample bore compromise (Breath by breath)
- Breathing valves (resistance)?
- CO2 sensor errors
- Calibration gas errors (Beta/Gama gases)
- Douglas bag leaks, non Brownian motion errors.
 - Temperature and pressure errors

Nafion tubing

(Jeff Swen)

- *Nanon contains sulphuric acid (Teflon + Sulphuric acid)
 - Nafion absorbs 22% by weight of water
 - •Absorbs 13 molecules H₂O for every sulfonic acid group
 - Cant absorb more humidity than external tubing
 - •Some use freezer (peltier device) to create 0% humidity
 - •Sulphuric acid can corrupt gas samples investigation.
 - Oxygen and Nitrogen also pass but lower %.
 - •Issues with long tests (Sulphuric acid saturated)

What parameters actually matter?

Christopher J. Gore, Rebecca K. Tanner, Kate L. Fuller and Tom Stanef (Australian Institute of Sport)

Likely error	% VO2	
+1% FeO2	-6.46	
+5% Ve	+5.00	
+1% P barr	+1.01	
+1% FeCo2	-0.23	
+1% Temperature	-0.07	
+1% RH / pH2O	-0.02	
decrease gas fraction, 30% water vapour	+5.54	

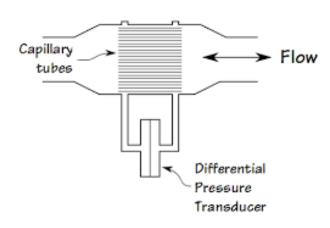
Reference values:

VO2 = 4.5495

VI STPD =136.10

VE STPD = 136.70

FIO2 = 0.1751%


02 = 0.2093%

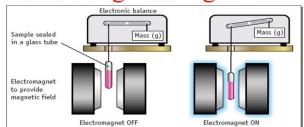
Ventilometer

Pneumotach

Douglas Bag Tissot tank

Turbine

1-2%


<1%

1-3%

O2 Sensors (most critical sensor!)

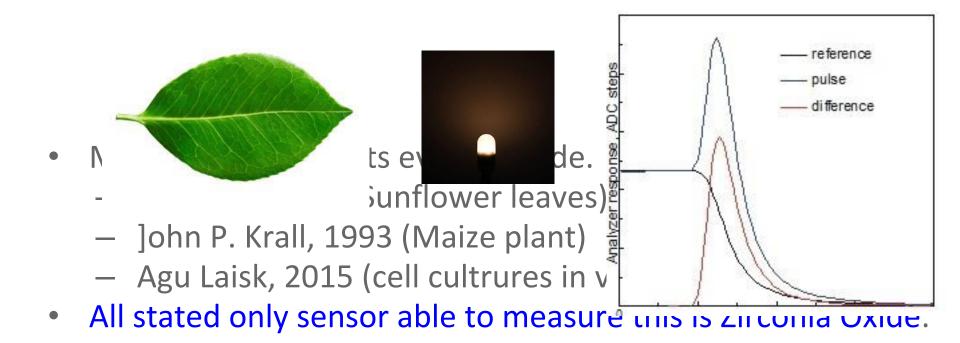
Zirconia
Paramagnetic
Galvanic
others (not used)

Measuring Paramagnetism

Paramagnetic: substance is attracted to a magnetic field. Substance has unpaired electrons.

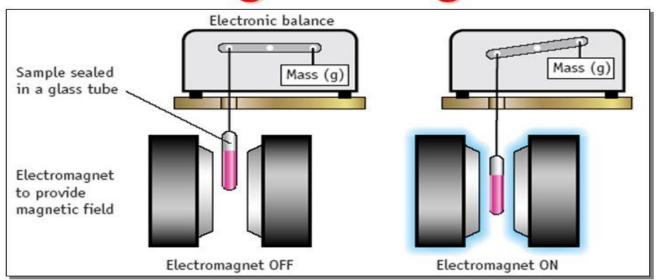
Diamagnetic: NOT attracted to a magnetic field

Active Figure 8.2



Zirconia

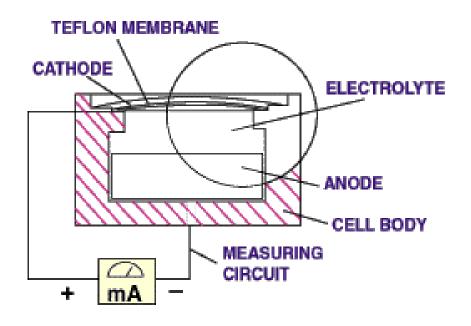
- zirconia ceramic is a solid electrolyte.
- conductive only to oxygen ions at 700+DegC.
- zirconia element with a porous platinum electrode


Photosynthesis Experiment (O2)

•Leaf experiment (Bjorkman and Gauhl, 1970). Concurrent Measurements of Oxygen and Carbon Dioxide Exchange during light pulses in a single leaf.

Paramagnetic O2 sensors

Measuring Paramagnetism


Paramagnetic: substance is attracted to a magnetic field. Substance has unpaired electrons.

Diamagnetic: NOT attracted to a magnetic field

Galvanic Cell O2 sensors

- Jelly electrolyte applied to gold cathode & silver anode
- Teflon membrane that is only permeable to oxygen.

Galvanic Cell O2 sensors

Sensor cell limited

(in contact with air even when not used) so periodic replacement is required.

- High drift occurs if operated continuously
- not suitable for continuous measurements
- Compact & low cost

System type comparison

- Douglas Bag: non automated (not covered)
 - Breath by Breath
- Mixing chamber
- AIS Automated

Douglas bag

best system

(0.8% error, 2% reliability)

Breath by Breath

- Easier on subject (small sample line)
- Potential for VO2 kinematics (individualised - NOT done!)
- However misalignment of VE and Fe critical!
 (instantaneously multiplied large errors)
- Signal very noisy and needs averaging
- Averaging devalues the system.
- Subject to more errors than Douglas Bag or Mixing Chamber

Breath by Breath issues continued

A. Gas concentration vs flow time delay items:

- 1. Tubing is crimped (undetectable)
- 2. Tubing length changed (less likely)
- 3. Gas sampling rate changed (less likely)
- 4. Water vapour in lumen (decrease sample line)
- 5. Calibration procedures should allow for regular re-alignment. It doesn't / Users dont know how.

Breath by Breath issues continued

- Large data variability one breath to the next
- Complex averaging algorithms and timing corrections - making validation difficult
- Less consistent data when compared to Mixing Chamber systems
- All points validated in papers:

Gore et. al

Beck et. al.

Proctor et. al., etc.

Mixing chamber systems

(Mr. Phil Loeb, AEI)

- Mixing Chamber advantages
- Every breath is recorded
- •O2 and CO2 data is accurately synchronized to each breath
- Very consistent data from one breath to the next
- •VO2 and VCO2 calculations utilize simple textbook formulas
- Accurate VO2 and VCO2 data as validated by Douglas Bags and 'First Principles' Simulators

Mixing Chamber systems (Mr. Phil Loeb, AEI)

Mixing Chamber disadvantages

- A thicker sampling hose
- etO2 and etCO2 measurements need additional analyzers

A.I.S metabolic cart

(Mr. Jamie Plowman - A.I.S.)

The best of all worlds

"Automated Douglas Bags"

- 1.Best O2 sensor
- 2.Best Ve sensor
- 3. Automated
- 4. Average error 0.8%
- 5.Re-test human 2%
- 6. Fine tune with calibrator

Vacumed calibrator issues (H.E.S.T.A.)

- Ventilation rate too low
- athletes need up to 7L of VO2
- Need (heated) wet gases
- fully mimic human breathing
- water vapout can be a significan issue
- system should test drying system and gas dilution issues

AIS Max II

(Jamie Plowman - A.I.S.)

Generates:

- gas fractions ± 0.05% absolute
 (both O₂ and CO₂)
- ventilation ±3%.
- range of physiological expirates

Interrogates any O2 system:

- accuracy of componentO2 and CO2 analysers
- ventilation device
- software used for data reduction.

Not available commercially

DR -Quality Control Rating (1-10)

Instrument	accurate	linear	stable	reliable	Function
Zirconia	10	9.5	10	9.5	10
Paramagnetic	8	8	7	8	9
Galvanic	7	7	6	6	7
Douglas bag	10	10	10	9	4
Turbine	6-9	6-9	6-9	6-9	9
Pneumotach	7-9	7-9	8-9	8-9	9
Mixing chamber	8	9	9	9	9
Breath by Breath	7	7	7	7	9.5
AIS system	10	9.5	10	9.5	9