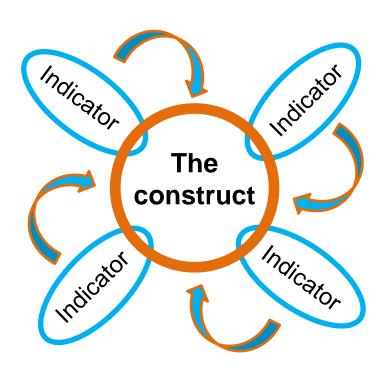
Validity & Reliability of Tensiomyography

Massimiliano Ditroilo, PhD

Lecturer in Sport and Exercise Science University College Dublin



Definition of validity

- Criterion (concurrent) validity
- Construct validity

displacement

Artificial Organs 21(3):240–242, Blackwell Science, Inc., Boston © 1997 International Society for Artificial Organs

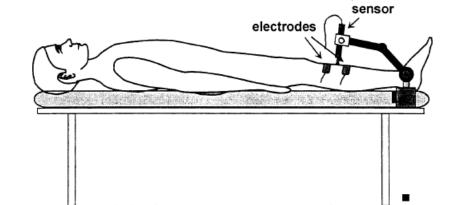
Measuring of Skeletal Muscles' Dynamic Properties

Vojko Valenčič and Nataša Knez

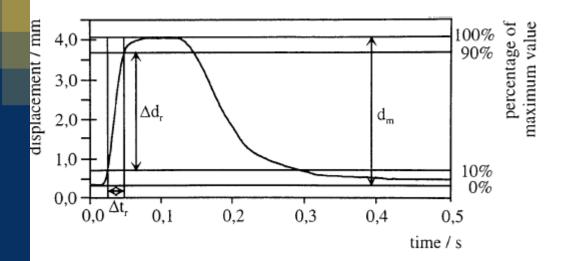
Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

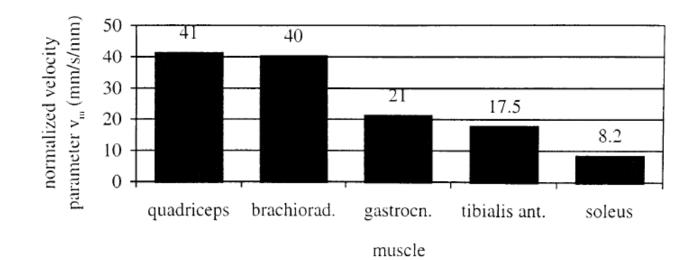
N = 1 (male, age 25 yr)

Muscles:


Quadriceps

Brachioradialis


Soleus


Gastrocnemius

Tibialis Anterior

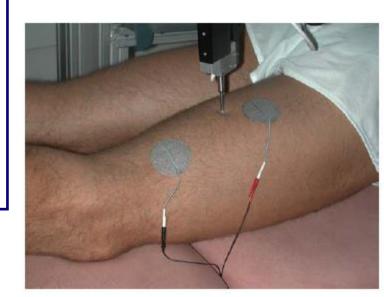
Med Bio Eng Comput (2006) 44:999-1006 DOI 10.1007/s11517-006-0114-5

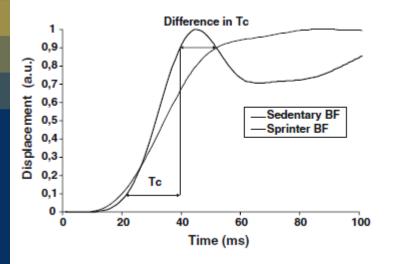
ORIGINAL ARTICLE

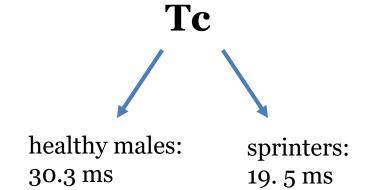
Adaptive potential of human biceps femoris muscle demonstrated by histochemical, immunohistochemical and mechanomyographical methods

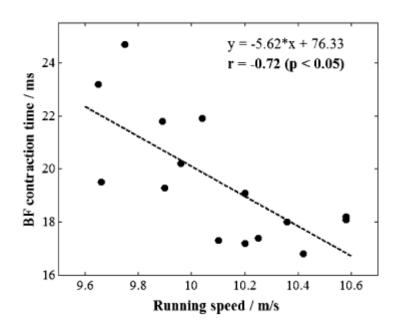
Raja Dahmane · Srdjan Djordjevič · Vika Smerdu

N = 15 (healthy males, age 17-40 yr)


N = 15 (male sprinters, age 17-40 yr) 100m PB: 10.52


N = 15 (male cadavers, age 17-40 yr)


Muscle:


Biceps femoris + a number of other muscles

Tc of healthy individuals vs. muscle composition of a matched sample of individuals who died suddenly

Muscle	Muscle 1	Fiber 2a	Type 2× (2b)	Contraction times/ms ± SD
Biceps brachii	46.4 ± 2.1	33.4 ± 2.2	16.6 ± 1.9	28.87 ± 4
Brachioradialis	47.1 ± 2.2	28.8 ± 2.5	19.5 ± 2.5	23.70 ± 5
Triceps brachii	38.0 ± 1.6	39.9 ± 2.0	17.9 ± 1.8	22.56 ± 6
Flexor digitorum superficialis	45.3 ± 1.9	41.8 ± 2.4	10.7 ± 1.7	25.40 ± 6
Extensor digitorum	47.5 ± 1.7	44.5 ± 1.8	6.5 ± 1.7	25.26 ± 5
Biceps femoris	49.0 ± 1.6	25.2 ± 1.3	20.7 ± 1.4	30.25 ± 3.5
Gastrocnemius	69.7 ± 2.0	24.1 ± 1.7	4.3 ± 0.7	44.75 + 4
Soleus	90.6 ± 2.3	8.7 ± 2.0	0.3 ± 0.2	46.52 ± 4
Tibialis anterior	72.9 ± 2.2	20.5 ± 1.6	4.1 ± 1.2	32.83 ± 4.5

Med. Sci. Sports Exerc., Vol. 43, No. 9, pp. 1619-1625, 2011.

Noninvasive Estimation of Myosin Heavy Chain Composition in Human Skeletal Muscle

BOŠTJAN ŠIMUNIČ $^{\rm I}$, HANS DEGENS $^{\rm 2}$, JÖRN RITTWEGER $^{\rm 2,3}$, MARCO NARICI $^{\rm 2}$, IGOR B. MEKJAVIĆ $^{\rm 4}$, and RADO PIŠOT $^{\rm I}$

¹Institute for Kinesiology Research, Science and Research Centre Koper, University of Primorska, Koper, SLOVENIA; ²Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UNITED KINGDOM; ³Institute of Aerospace Medicine, German Aerospace Center, Cologne, GERMANY; and ⁴Department of Automation, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, SLOVENIA

N = 27 (age 20-83 yr)

Muscle:

Vastus lateralis, biopsy and TMG

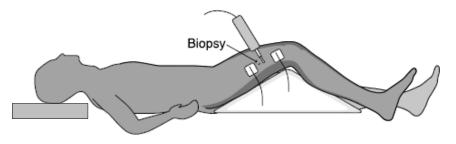
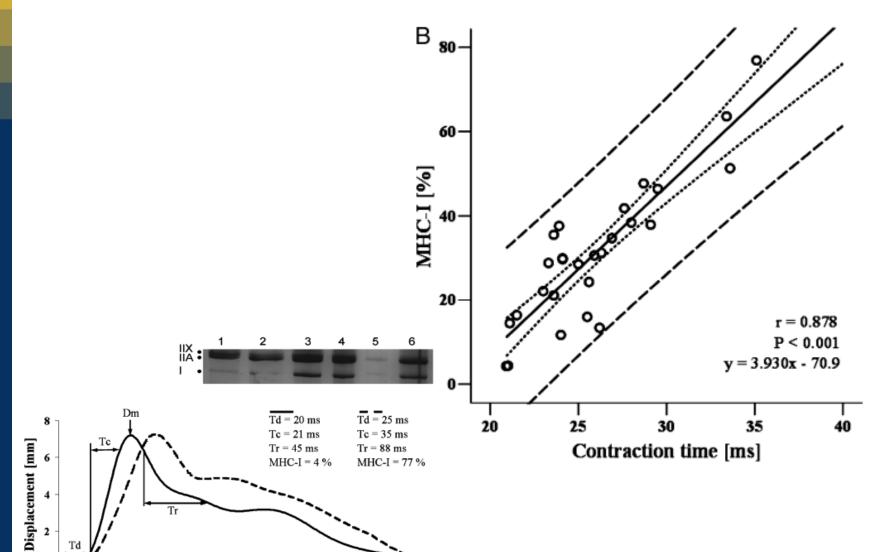



FIGURE 1—Schematic representation of the tensiomyographic measuring setup with marked biopsy spot at 40% (from the distal end) of the connecting line between the lateral knee cleft and the spina iliaca anterior superior.

250

50

100

Time [ms]

150

200

Journal of Electromyography and Kinesiology 22 (2012) 334-341

Contents lists available at SciVerse ScienceDirect

Journal of Electromyography and Kinesiology

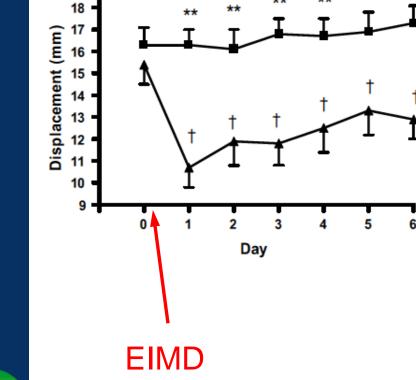
Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography

Angus M Hunter ^{a,*}, Stuart DR Galloway ^a, Iain J Smith ^a, Jamie Tallent ^b, Massimiliano Ditroilo ^c, Malcolm M Fairweather ^d, Glyn Howatson ^{b,e}

 $N = 19 (age 21.1 \pm 4.7 yr)$

Muscle:

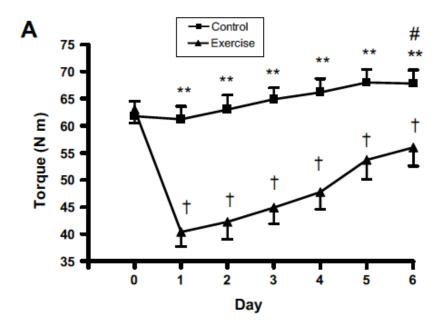
Biceps brachii

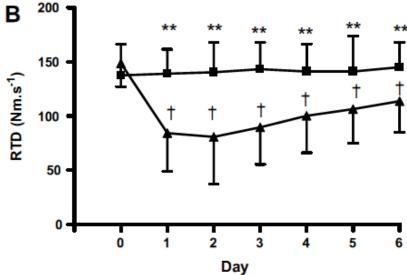

a Health and Exercise Sciences Research Group, University of Stirling, Stirling, UK

^b Department of Sport and Exercise Sciences, Northumbria University, Newcastle, UK

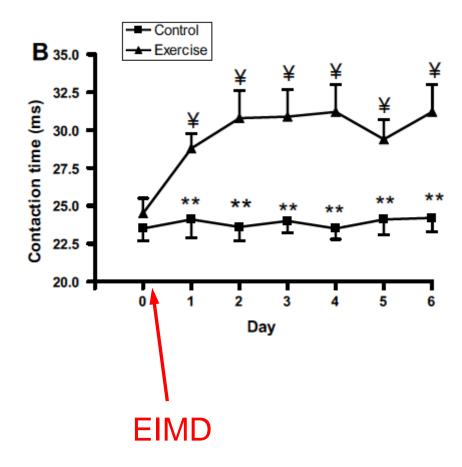
^c School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland

^d Sportscotland Institute of Sport, Stirling, UK


e Centre of Aquatic Research, University of Johannesburg, Gaunteng, South Africa



Control


<u> Exercise</u>

19

Summary of the results from validity studies:

- **Tc** is directly correlated to % of type I muscle fibres and MHC-I
- **Tc** discriminates between sprinters and sedentary participants
- A fatigue-induced reduction in **Dm** is matched by a reduction in torque developed
- **Tc** and **Dm** are altered as a result of EIMD

Definition of reliability

- Intra-session reliability
- Inter-session reliability
- Long-term stability

BLECTROMYOGRAPHY KINESIOLOGY

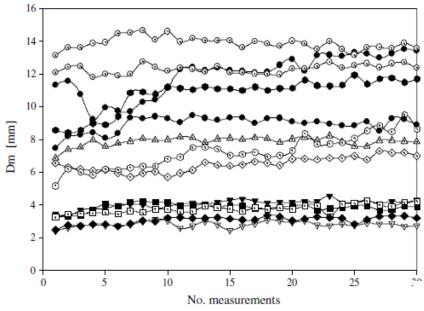
Journal of Electromyography and Kinesiology 18 (2008) 645-651

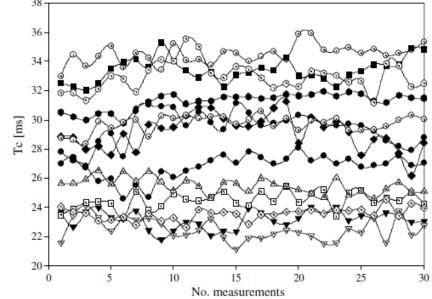
www.elsevier.com/locate/jelekin

Short-term repeatability of parameters extracted from radial displacement of muscle belly

Dejan Križaj *, Boštjan Šimunič, Tomaž Žagar

Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia


N = 13 (healthy participants, age 30.7) 30 measurements, 10 s in between


Muscle:

Biceps brachii

	MIN	MAX	MEAN	NSEM	ICC
Dm	2.42	14.66	7.47	1.23	0.98
Td	22.53	35.61	28.08	0.43	0.94
Tc	21.14	35.92	28.18	0.48	0.97
Ts	44.65	256.06	136.81	1.30	0.89
Tr	17.18	162.01	81.39	1.92	0.86

Journal of Electromyography and Kinesiology 22 (2012) 527-530

Contents lists available at SciVerse ScienceDirect

Journal of Electromyography and Kinesiology

journal homepage: www.elsevier.com/locate/jelekin

Between-day reliability of a method for non-invasive estimation of muscle composition

Boštjan Šimunič*

University of Primorska, Science and Research Centre Koper, Institute for Kinesiology Research, Slovenia

N = 10 (healthy participants, age 24.6)

Average of two measures taken over 3 consecutive days

Muscle:

Vastus lateralis

Vastus medialis

Biceps femoris

Table 1
Between-day reliability analysis for vastus medialis obliques (VMO, upper table), vastus lateralis (VL, middle table), and biceps femoris (BF, lower table).

	Test 1	Test 2	Test 3	P_{F-Test}	Bias _{mean}	RE	SEM	CV (%)	CC [95% CI]
VMO									
Γd (ms)	22.4 ± 1.7	22.4 ± 1.9	22.2 ± 1.6	0.606	0.19	±0.62	±0.42	2.8	0.94 0.82-0.98
Tc (ms)	25.7 ± 3.1	25.8 ± 3.1	25.8 ± 2.7	0.935	0.07	±0.56	±0.40	2.2	0.98 [0.95-0.99
Ts (ms)	176.1 ± 22.3	185.5 ± 19.3	177.8 ± 23.1	0.065	6.29	±8.64	±5.46	4.9	0.94 [.81-0.98
Tr (ms)	42.7 ± 10.7	43.4 ± 11.2	41.1 ± 11.0	0.225	1.51	±2.60	±1.70	6.4	0.88 [0.78-0.96
Dm (mm)	6.8 ± 1.3	6.5 ± 1.2	6.7 ± 1.3	0.791	0.23	±0.30	±0.17	4.7	0.98 [0.95-0.99
VL									l 1
Γd (ms)	23.7 ± 0.9	23.9 ± 0.7	23.9 ± 1.2	0.645	0.12	±0.44	±0.30	1.8	0.89 [0 69-0.9]
Tc (ms)	22.6 ± 2.3	22.6 ± 2.1	23.1 ± 2.4	0.108	0.32	±0.41	±0.25	1.5	0.98 [0 94-0.99
Γs (ms)	170.0 ± 27.2	169.7 ± 23.7	164.9 ± 20.5	0.445	3.22	±7.09	±4.99	4.4	0.96 [0 87-0.9
Tr (ms)	64.9 ± 20.1	67.5 ± 18.1	70.3 ± 18.7	0.104	3.59	±4.63	±3.18	7.6	0.89 [0 82-0.9
Om (mm)	8.5 ± 2.4	8.4 ± 2.4	8.6 ± 2.4	0.791	0.23	±0.38	±0.25	4.7	0.99 [0 97-1.0
BF									1 /
Γd (ms)	23.7 ± 3.0	23.6 ± 3.3	23.7 ± 3.5	0.928	0.07	±0.61	±0.40	2.6	0.98 [0.87-0.98
Tc (ms)	29.1 ± 7.9	29.6 ± 8.5	30.6 ± 9.6	0.183	1.03	±1.50	±1.06	4.9	0.98 [0.95-1.0
Γs (ms)	208.0 ± 19.8	205.8 ± 21.1	206.4 ± 25.2	0.830	1.48	±6.57	±5.01	3.3	0.95 0.84-0.9
Γr (ms)	56.2 ± 17.1	63.4 ± 27.1	62.7 ± 19.2	0.063	4.81	±6.19	±4.12	9.3	0.89 0.80-0.9
Dm (mm)	5.5 ± 2.1	5.6 ± 2.1	5.7 ± 2.4	0.262	0.13	±0.23	±0.43	4.2	0.99 0.98-1.0

Td – delay time; Tc – contraction time; Ts – sustain time; Tr – half relaxation time; Dm – maximal displacement; P_{F-Test} – RM ANOVA significance; |BIAS_{mean}| – average of absolute bias; RE – random error; SEM – standard error of measurement; CV – coefficient of variation; ICC – intra-class correlation coefficient; CI – confidential interval.

Journal of Electromyography and Kinesiology 23 (2013) 558-563

Contents lists available at SciVerse ScienceDirect

Journal of Electromyography and Kinesiology

journal homepage: www.elsevier.com/locate/jelekin

Long-term stability of tensiomyography measured under different muscle conditions

Massimiliano Ditroilo ^{c,*}, Iain J. Smith ^a, Malcolm M. Fairweather ^b, Angus M. Hunter ^a

N = 21 (healthy participants, age 21.3)

Muscle:

Gastrocnemius medialis

a Health and Exercise Sciences Research Group, University of Stirling, Scotland, United Kingdom

b Sports cotland Institute of Sport, Stirling, Scotland, United Kingdom

^c Department of Sport, Health & Exercise Science, Faculty of Science, University of Hull, England, United Kingdom

Research design:

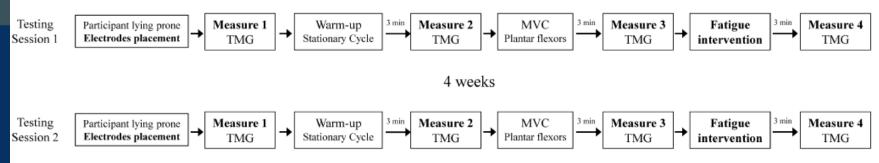
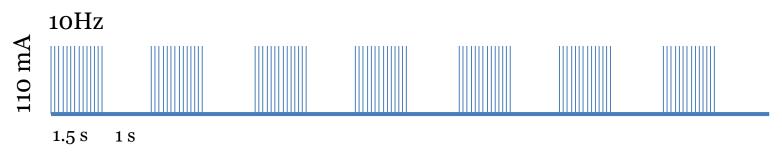



Fig. 1. Overview of the testing protocol. TMG = tensiomyography; MVC = maximal isometric voluntary contraction;

Fatigue protocol:

CV (95% CI)						
	M1	M2	M3	M4		
Tc	9.4 (6.3-12.5)	9.1 (6.4-11.8)	8.1 (5.4-10.8)	3.8 (2.3-5.3)		
Ts	6.8 (3.7-9.9)	8.2 (5.0-11.3)	5.5 (3.7-7.3)	5.3 (3.1-7.6)		
Tr	30.3 (18.2-42.4)	32.7 (18.4-47.0)	27.8 (14.5-41.1)	29.4 (19.2-39.6)		
Td	9.2 (5.2-12.9)	8.2 (4.2-12.3)	7.8 (3.7-11.9)	7.0 (3.2-10.8)		
Dm	14.8 (10.4-19.3)	11.1 (7.0-15.1)	10.1 (5.0-15.2)	8.0 (5.0-11.0)		

Summary of the results from reliability studies:

- **Dm** and **Tc** appear to have the highest
 - -Intra-session (ICC 0.98 and 0.97),
 - -Inter-session (ICC 0.98 to 0.99; CV 1.5 to 4.9%)
 - -Long term stability (ICC 0.62 to 0.95; CV 3.8 to 14.8%)
- **Tr** is consistently the least reliable parameter across studies

